DIAION™ SMNUPB

DIAION™ SMNUPB is a mixed resin with strongly acidic cation exchange resin, and strongly basic anion exchange resin. It is used for non-regenerable mixed bed ion exchange applications for higher purity water.

Product

DIAION TM SMNUPB	Grade Name
Mixed	Туре
Styrene-DVB, Gel	Matrix
Sulfonic acid / Type I (trimethyl ammonium groups)	Functional Group
H ⁺ / OH ⁻	Ionic Form
1/1	Chemical Equivalent Ratio

Specification

Component		Mixed resin
Resistivity within 5 minutes	MΩ·cm	15 min.
Resistivity within 30 minutes	MΩ·cm	17.5 min.

Typical Properties

Component			Mixed resin
Shipping Density	g/L		710
Component		Cation exchange resin	Anion exchange resin
Whole Bead Count	-	90 min.	-
Salt Splitting Capacity	meq/mL	1.7 min.	0.9 min.
Water Content	%	50 - 60	62 - 72
Particle Size Distribution on 1180 μm	%	5 max.	5 max.
Particle Size Distribution thr. 300 μm	%	1 max.	1 max.
Mean Particle Size	μm	700	720
Effective Size	mm	0.40 min.	0.40 min.
Uniformity Coefficient	-	1.6 max.	1.6 max.
Ionic Form Conversion (H ⁺)	eq%	99 min.	-
Ionic Form Conversion (OH ⁻)	eq%	-	90 min.
Ionic Form Conversion (Cl ⁻)	eq%	-	1 max.
Particle Density	g/mL	1.20	1.08
Total Swelling (Na ⁺ to H ⁺)	%	9	-
Total Swelling (Cl to OH)	%	-	24

Recommended Operating Conditions

Maximum Operating Temperature	°C	60
Operating pH Range		0 - 14
Minimum Bed Depth	mm	800
Service Flow Rate	m/h	10 - 60

Phone: 212-204-0075
Email: info@pyvot.tech

Hydraulic Characteristics

The approximate pressure drop at various temperatures and flow rates for each meter of bed depth of $\mathsf{DIAION}^\mathsf{TM}$ SMNUPB resin in normal down flow operation is shown in the graphs below.

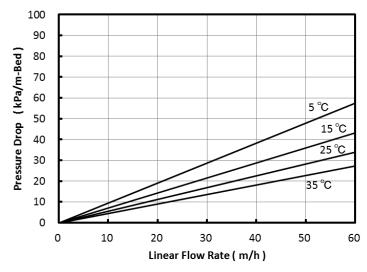


Fig. 1 Pressure Drop of SMNUPB

Phone: 212-204-0075 Email: info@pyvot.tech Web: www.pyvot.tech

Rinse Performance

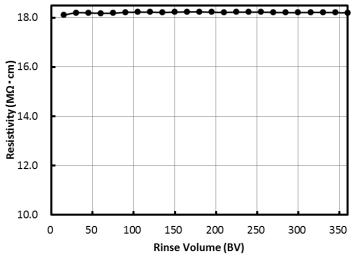


Fig. 2 Resistivity versus Rinse Volume for SMNUPB Flow rate: SV 30 (15 L/hr), Resin volume: 500 mL-R

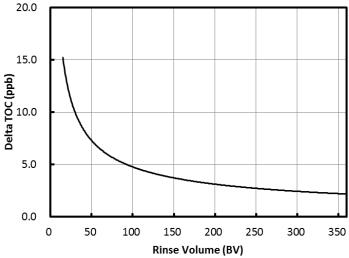


Fig. 3 Delta TOC versus Rinse Volume for SMNUPB Flow rate: SV 30 (15 L/hr), Resin volume: 500 mL-R

Notice

This information are given in good faith but without warranty, and this also applies where proprietary rights of third parties are involved. The application, use and processing of our products are beyond our control and therefore your own responsibility.

