SEPABEADS[™] SP70

SEPABEADS™ SP70 is highly porous styrenic adsorbents. It has moderate surface area and a narrower pore size distribution than HP20. It can be adapted to the US FDA standared, CFR 173.65 and used for various food application.

SEPABEAS™ SP70 is characterized by:

>> Excellent batch-to-batch reproducibly >> Excellent pressure/flow characteristics

>> Wide application

Physical and chemical properties

r nysical and chemical properties		
Grade Name		DIAION TM SP70
Bead form		Spherical, porous
Matrix	Poly divinyl	benzene / ethylvinylbenzene
Chemical Structure	—(-	CH ₂ -CH-CH ₂ -CH- —CH-CH ₂ — CH ₂ CH ₃
Whole Bead Count	-	95 min.
Shipping Density*	g/L	690
Water content	%	57 - 67
Particle Size Distribution thr. 250 μm	%	5 max.
Effective size	mm	0.25 min.
Uniformity Coefficient	-	1.6 max.
Particle Density*	g/mL	1.01
Specific Surface Area	m²/g	700 min.
Pore Volume*	mL/g	1.5
Pore Radius*	Å	70
DVB extractables	ppb	50 max.

Note: properties with a mark "*" are referential data.

Swelling ratio in various solvents

- Treming ratio in various sorreints	
Methanol	1.15
Ethanol	1.21
2-Propanol	1.11
Acetone	1.21
Toluene	1.20
Acetonitrile	1.18
Water	1.00

SP70

Pore size distribution

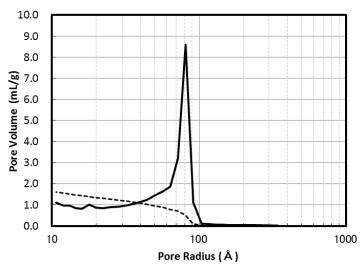


Fig. 1 Pore size distribution of SP70

Recommended Operating Conditions

Maximum Operating Temperature	°C	130	
Operating pH Range		0 - 14	
Minimum Bed Depth	mm	800	
Flow rate	BV/h	Loading 0.5 - 5	
	BV/h	Displacement 0.5 - 2	
	BV/h	Regeneration 0.5 - 2	
	BV/h	Rince 1 - 5	
Regenerant			
Organic solvents for hydrophobic compounds			
Bases for acidic compounds			
Acids for basic compounds			
Buffer solution for pH sensitive compounds			
Water for an ionic solution			
Hot steam for volatile compounds			

SP70

Hydraulic Characteristics

The approximate pressure drop at various temperatures and flow rates for each meter of bed depth of SEPABEADSTM SP70 resin in normal down flow operation is shown in the graph below.

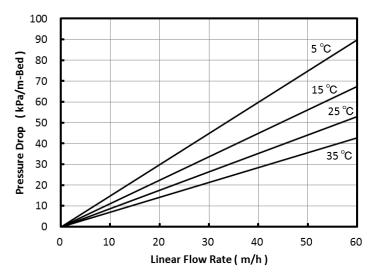


Fig. 2 Pressure Drop of SP70

FDA status

DIAIONTM SP70 has clearance under FDA food Additive Reguration 21 CFR 173.65

- Divinylbenzene Copolymer. The product may be used for the removal of organic substances from aqueous foods under the conditions outlined in 21 CFR 173.65.

Applications

- Purification of juices
- •Removal of naringin and other bittering agents
- Purification of small peptides, oligonucleotides and proteins
- Adsorption of vitamins, antibiotics, enzymes, steroids and other substance from fermentation solutions
- Decolorization and purification of various chamicals

Notice

This information are given in good faith but without warranty, and this also applies where proprietary rights of third parties are involved. The application, use and processing of our products are beyond our control and therefore your own responsibility.

