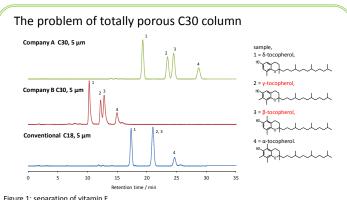
Evaluation of C30 Phase Bonded on Superficially Porous Silica

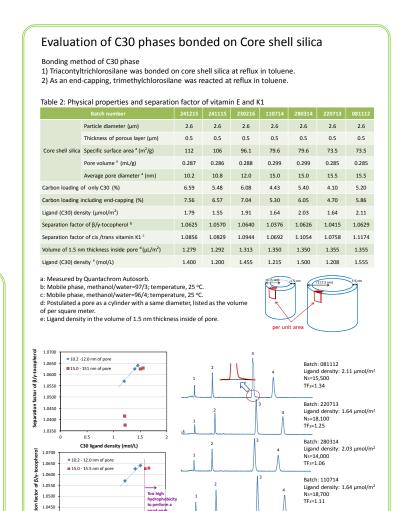
Author: Norikazu Nagae, Tomoyasu Tsukamoto and Shun Kojima

ChromaNik Technologies Inc. Namiyoke, Minato-ku, Osaka Japan 552-0001

For information, contact: Scott Silver at scott@pyvot.tech

A long alkyl group like C30 (triacontyl group) has been known to be more suitable than a conventional C18 phase for separation of hydrophobic structurally related isomers such as vitamin E or vitamin K1. In this study, separation factor of beta-tocopherol and gammatocopherol which were structurally related isomers was evaluated to vary both a pore diameter of the superficially porous silica and a ligand density of the C30 group. Regarding a pore diameter, 12 nm showed the largest separation factor of beta and gamma-tocopherol among 10nm, 12 nm and 16 nm. Regarding a ligand density, the higher a ligand density, the larger a separation factor of beta and gamma-tocopherol. However, when a ligand density was too high, much high hydrophobicity caused peak tailing and a drop of theoretical plate. The most suitable ligand density existed for the highest resolution. Finally separation of cis and trans-vitamin K1 was compared and the same result as separation of beta and gammatocopherol was obtained.




Figure 1: separation of vitamin E.

Column dimension, 250 x 4.6 mm; mobile phase, methanol/water = 97/3; flow rate, 1.0 mL/min; temperature, 30 °C; detection, UV295 nm

Table 1: Physical properties and separation factor and resolution of vitamin E

	Company A C30, 5 μm		
Specific surface area (m²/g)	300	200	300
Pore diameter (nm)	13	20	13
Carbon loading (%)	18	20	18
Ligand density (µmol/m²)	1.9	3.7	3.0
Theoretical plate	16,500	6,100	15,800
USP tailing factor	1.02	1.63	1.04
Separation factor of β/γ-tocopherol	1.048	1.062	***
Resolution of β/γ-tocopherol	1.30	0.85	

*When the ligand (C30) density is too high, peak tailing occurs more and a theoretical plate is low. High ligand density on the particle surface is one of reasons of a low theoretical plate and a tailing peak.

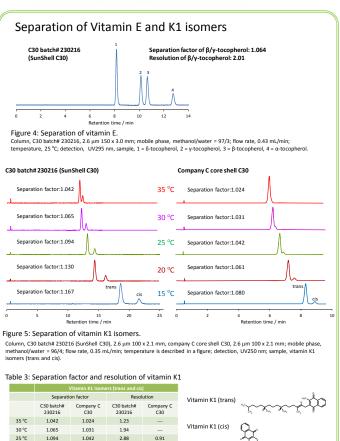

1.5

Figure 2: Relationship between 2 kinds of ligand density and separation factor. Column dimension, 100 x 2.1mm; mobile phase, acetonitrile/water = 60/40; flow rate, 0.3 mL/ml; remperature, 30 °C; peak, 1 = uracli, 2 = ethylbenzoate, 3 = acenaphthene, 4 = butylbenzene. alow theoretic with the column time and γ -tocopherol. However, more than 2 γ -tocopherol ilgand density caused the low theoretical plate and the tailing peak.

Figure 3: Comparison of theoretical plate and USP tailing factor.

Phone: 212-204-0075
Email: info@pyvot.tect

Conclusion

1.130

1.061

3.33

*C30 phase could separate $\beta\text{-tocopherol}$ and $\gamma\text{-tocopherol}$ although C18 phase could not separate such isomers.

1.41

- * The higher C30 ligand density, the larger separation factor of β -tocopherol and γ -tocopherol. However, high hydrophobicity on the particle surface made packing state bad. As a result, more than 2 μ mol/m2 of ligand density caused a low theoretical plate and a tailing peak.
- * C30 phase bonded inside a pore with 12 nm diameter showed not only high ligand density per volume but also no too high hydrophobicity on the particle surface in order to perform good separation (high theoretical plate and no tailing). Proposed C30 phase (batch# 230216) showed better separation of vitamin K1 isomers than company C C30.