

Relationship between retention factor and carbon loading

		Retention factor	Carbon loading (%)	Specific surface area ^b (m ² /g)
Sur	nShell C18, 2.6 μm	10.4	7.3	125
Co	mpany S C18, 2.7 μm	9.7	8.0	133
Co	mpany A C18 EC, 2.7 μm	9.0	8.5	135
Co	mpany W C18, 2.7 μm	7.7	7.3	113
Co	mpany T C18, 2.7 μm	7.4	8.8	130
Co	mpany P C18, 2.6 μm	5.4	4.9	102

a. Retention factor of amylbenzene, mobile phase; methanol:water=75:25, 40 °C,
b. Measured using C18 materials sintered at 600 degree Celsius for 8 hours.

Both Sunniest end-capping and Silanol Activity Control

Despite not having the highest Carbon Loading (%) the Chromanik SunShell 2.6um column had the highest Retention Factor. The SunShell C18 was the most retentive as a result of the Silanol Activity Control Technology.