Evaluation of Retention Behavior and Stability of Novel Trifunctional Biphenyl Phase

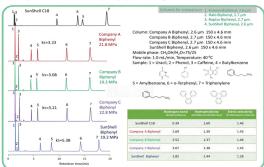
Norikazu Nagae¹, Tom Toyasusukamoto¹, Ryuji Koyama¹, Scott Silver²1

ChromaNik Technologies Inc. Namiyoke, Minato-ku, Osaka Japan² Pyvot, 1040 1st Avenue, Suite 330 New York, NY *Corresponding author email: nagae@chromanik.co.jp

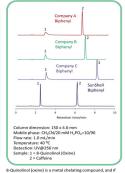
For more information email: scott@pyvot.tech

Biphenyl columns are currently available from several HPLC column manufacturers. Their biphenyl phases are only mono-functional. In this study, tri-functional biphenyl stationary phase was modified on a core shell silica and double end-capping was done at high reaction temperature. Tri-functional biphenyl stationary phase was compared with mono-functional biphenyl stationary phase not only for measurement of hydrogen bond capacity, hydrophobicity and steric selectivity but also for a peak shape of a metal chelating compound and a basic compound. Furthermore stability of each biphenyl stationary phase was evaluated under both acidic and basic pH conditions. Although phenyl stationary phase shows higher hydrogen bond capacity than alkyl stationary phases, biphenyl stationary phase showed the highest hydrogen bond capacity. Such a high hydrogen bond capacity leaded unique separation selectivity when separating σ , m, pmethylhippuric acid and vanillin and DNPH-aldehydes. Proposed trifunctional biphenyl stationary phase showed the most stable under both acidic and basic pH conditions.

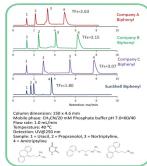
SunShell Biphenyl, Tri-functional Biphenyl



Company A, B and C Biphenyl, Monofunctional Biphenyl

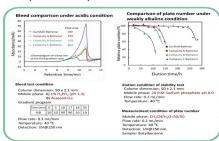

Specific	ation of Su	nShell									
		Core shell silica				Bonded phase					
		Particle size (µm)	Core size (µm)	Pore size (nm)	Specific surface area (m²/g)	Carbon loading (%)	Stationary phase	USP L line	End-capping	Maximum pressure	pH range
SunShell Biphenyl		2.6	1.6	9	150	5	Biphenyl	uıı	Sunniest end- capping	60 MPa	15 -9
Specific	ation of ot	her Biph	enyl (cit	ed from a	brochure)						
Compa	y A Biphenyl	2.6	-	10 (effective)	200 (effective)	11	Biphenyl	uı	TMS	60 MPa	15 -83
Compa	ny B Biphenyl	2.7		,	135	7	Eipheryldimethyl- slane	un	Yes	60 MPa	15 -83
Compa	vy C Biphenyl	2.7		9	130	7	Bipheryldimethyl- slane	un	Yes	60 MPa	15 -83

Comparison of core shell Biphenyl phases using standard samples

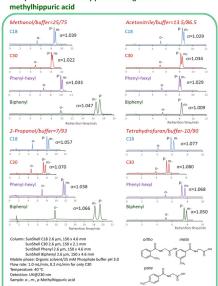


Compared with other company's core shell type Biphenyl. Biphenyls from companies A, B and C showed similar separation patterns. It was confirmed that SunShell Biphenyl has a higher retention of amylbenzene No. 5 and a larger separation fac

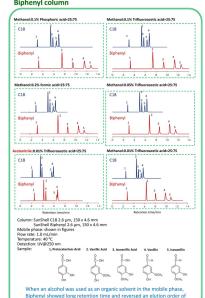
Comparison using oxine



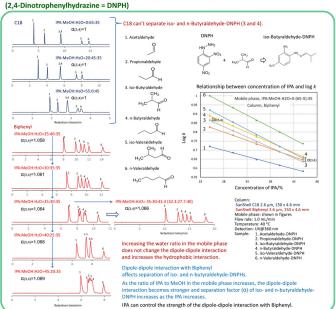
Comparison using basic compounds


Tailing of basic compounds (amitriptyline) occurs more easily in the acetonitrile/buffer mobile phase than in the methanol/buffer mobile phase. A mixture of acetonitrile and 20 mM phosphate buffer was used as mobile phase to compare with core shell Biphenyls. Bipheny from other companies had a terrible tailing for basic compounds.

Comparison of stability


Stability under acidic condition compared baseline changes with gradient elution of 1% agueous phosphoric acid solution and acetonitrile. Biphenyl groups are cut off from the six surface under acidic condition and elute out of the column as the amount of organic solvent increases. Esseline variability detected cut Biphenyl groups, with Sunfskell showing the least disclosed and the column-in side was detected, so the theoretical plate number of the columns were compared. Since the Biphenyl column has high reproducibility of retention time even in a 100% aqueous mobile phase (see page 6) and is effective for separating highly polar compounds, stability comparison was performed under the condition of pl 8 that does not contain an organic solvent. Sunfshells is more than twice as durable as other companies?

Comparison of stationary phases using isomers of



hen an alcohol was used as an organic solvent in the mobile phase, Biphen showed the longest retention time of all stationary phases and also reversed the elution order of *m*- and *p*-methylhippuric acids.

Separation of vanilin and isovanillin using C18 and Biphenyl column

Separation of 6 kinds of DNPH-aldehyde using C18 and Biphenyl column

